
The Australian National University
Mid Semester Examination – August 2020

Comp2310 & Comp6310
Systems, Networks and Concurrency

 Study period: 15 minutes
 Time allowed: 2 hours (after study period)
 Total marks: 50
 Permitted materials: None

Questions are not equally weighted – sizes of answer boxes do not nec-
essarily relate to the number of marks given for this question.

All your answers must be written in the boxes provided in this exam form. You can use scrap paper for work-
ing, but only those answers written in this form will be marked. Do not upload your exam anywhere but the
prescribed exam submission system. There is additional space at the end of the booklet in case the answer boxes
provided are insufficient. Label any answer you write at the end of the exam form with the number of the ques-
tion it refers to and note at the question itself, that you provided addition material at the end.

Greater marks will be awarded for answers that are simple, short and concrete than for answers of a sketchy and
rambling nature. Marks will be lost for giving information that is irrelevant to a question.

Student number:

The following are for use by the examiners

Q1 mark Q2 mark Q3 mark

Total mark

Comp2310 & Comp6310 Mid-Semester Exam 2020 Page 2 of 12

1. [15 marks] General Concurrency

(a) [8 marks] In most concurrent programming languages, any concurrent entity (for ex-
ample a task in Ada) can create new concurrent entities. What are the possible depen-
dencies between the original and the newly created concurrent entity? Explain in terms
of access to local variables as well as lifetimes.

(b) [7 marks] A concurrent entity (for example a task in Ada) has some influence on where
and how often its statements will be interleaved with other concurrent entities. Explain
precisely how a concurrent entity can control or moderate those interleavings. Can a
concurrent entity completely prevent being interleaved? If so: how exactly?

Comp2310 & Comp6310 Mid-Semester Exam 2020 Page 3 of 12

2. [13 marks] Contention

(a) [13 marks] In most concurrent programming languages, the following simple vector
addition will not be atomic.

 type Vector is array (Coordinates) of Real;

 function “+” (V_Left, V_Right : Vector) return Vector is

 V_Result : Vector;

 begin
 for Axis in Vector’Range loop
 V_Result (Axis) := V_Left (Axis) + V_Right (Axis);
 end loop;
 return V_Result;
 end “+”;

 Vector_1 : constant Vector := (others => 2.0);
 Vector_2 : constant Vector := (others => 3.0);
 Result : constant Vector := Vector_1 + Vector_2;

Assume that Coordinates is a scalar type and Real is a floating point type.

(i) [6 marks] Can you make vector addition an atomic operation? If not, then explain
why not. If you can, then provide code to make it atomic. Use pseudo-code or any
programming language which you are familiar with. The syntax of your atomic vector
addition (if you can make one) does not need to follow the syntax above.

Comp2310 & Comp6310 Mid-Semester Exam 2020 Page 4 of 12

(ii) [7 marks] Make vector addition concurrent. Use pseudo-code or any programming
language which you are familiar with.

Comp2310 & Comp6310 Mid-Semester Exam 2020 Page 5 of 12

3. [22 marks] Synchronization

(a) [6 marks] There are multiple entry and exit doors at a concert venue and each entry
and exit is equipped with an automatic detection system for when a person leaves or
enters (assume each door system to be implemented by individual tasks).

Provide code to calculate the total number of people inside the venue, and allow mul-
tiple display units (also assume them to be individual tasks) to show this number on
boards across the venue.

In times of viruses all around, we also need to strictly limit the number of people inside
the venue at any time. Provide a mechanism so that entry door tasks will not be able to
progress any further if the total number of people reaches 100. Use pseudo-code or any
programming language which you are familiar with.

Comp2310 & Comp6310 Mid-Semester Exam 2020 Page 6 of 12

(b) [16 marks] Read the following Ada program carefully. The program is syntactically
correct and will compile without warnings. See comments below and questions on the
following pages.

with Ada.Text_IO; use Ada.Text_IO;
with Id_Dispenser;

procedure Task_Processing is

 No_Of_Clients : constant Positive := 3;
 type Client_Range is mod No_Of_Clients;

 package Dispense_Client_Ids is new Id_Dispenser (Element => Client_Range);
 use Dispense_Client_Ids;

 protected Release is

 entry Free_1 (Id : Client_Range);
 entry Free_2 (Client_Range);

 private

 Max_Id : Client_Range := Client_Range’Invalid_Value;
 Clients_Left_1, Clients_Left_2 : Client_Range := Client_Range’Last;

 end Release;

 protected body Release is

 entry Free_1 (Id : Client_Range)
 when Free_1’Count = Natural (Clients_Left_1) + 1 is

 begin
 if Max_Id’Valid then
 if Id = Max_Id then
 Max_Id := Client_Range’Invalid_Value;
 Clients_Left_1 := Clients_Left_1 - 1;
 Put_Line (Client_Range’Image (Id) & “ is released 1”);
 else
 Max_Id := Client_Range’Max (Max_Id, Id);
 requeue Free_1;
 end if;
 else
 Max_Id := Id;
 requeue Free_1;
 end if;
 end Free_1;

 entry Free_2 (for Id in Client_Range) when Id = Clients_Left_2 is

 begin
 Clients_Left_2 := Clients_Left_2 - 1;
 Put_Line (Client_Range’Image (Id) & “ is released 2”);
 end Free_2;

 end Release;

(continued on next page)

Comp2310 & Comp6310 Mid-Semester Exam 2020 Page 7 of 12

 task type Client;
 task body Client is

 Id : constant Client_Range := Draw_Id;

 begin
 Release.Free_1 (Id);
 Put_Line (Client_Range’Image (Id) & “ is free 1”);
 Release.Free_2 (Id);
 Put_Line (Client_Range’Image (Id) & “ is free 2”);
 end Client;

 Clients : array (Client_Range) of Client; pragma Unreferenced (Clients);

begin
 null;
end Task_Processing;

The pragma Unreferenced prevents a compiler warning which would point out that Cli-
ents is not referenced in this program. Id_Dispenser and Draw_Id do exactly what you
think they do (they provide unique Id’s).

See questions on the following pages.

Comp2310 & Comp6310 Mid-Semester Exam 2020 Page 8 of 12

(i) [8 marks] Explain what is happening in this program. Are Free_1 and Free_2 equiv-
alent? If you find differences in their behaviour, then describe them precisely. Which
one would you prefer in your own code and why exactly?

Comp2310 & Comp6310 Mid-Semester Exam 2020 Page 9 of 12

(ii) [3 marks] What is the terminal output of this program. If you find that there are
multiple options, then describe those options as precisely as you can.

Comp2310 & Comp6310 Mid-Semester Exam 2020 Page 10 of 12

(iii) [5 marks] Use message passing to achieve the same synchronization effect be-
tween the Client tasks. Use pseudo-code or any programming language which you are
familiar with.

continuation of answer to question part

continuation of answer to question part

Comp2310 & Comp6310 Mid-Semester Exam 2020 Page 11 of 12

continuation of answer to question part

continuation of answer to question part

Comp2310 & Comp6310 Mid-Semester Exam 2020 Page 12 of 12

	Student number:
	Q1 mark:
	Q2 mark:
	Q3 mark:
	Total mark:
	of access to local variables as well as lifetimes:
	concurrent entity completely prevent being interleaved If so how exactly:
	addition if you can make one does not need to follow the syntax above:
	language which you are familiar with:
	programming language which you are familiar with:
	one would you prefer in your own code and why exactly:
	multiple options then describe those options as precisely as you can:
	familiar with:
	continuation of answer to question part:
	continuation of answer to question:
	part:
	continuation of answer to question part_2:
	continuation of answer to question_2:
	part_2:
	continuation of answer to question part_3:
	continuation of answer to question_3:
	part_3:
	continuation of answer to question part_4:
	continuation of answer to question_4:
	part_4:

